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Abstract. Fully packed loop (FPL) models on the square and the honeycomb lattice constitute
new classes of critical behaviour, distinct from those of the low-temperature O(n)model. A simple
symmetry argument suggests that such compact phases are only possible when the underlying
lattice is bipartite. Motivated by the hope of identifying further compact universality classes we
therefore study the FPL model on the square–octagon lattice. Surprisingly, this model is only
critical for loop weightsn < 1.88, and its scaling limit coincides with the dense phase of the O(n)

model. Forn = 2 it is exactly equivalent to the self-dual 9-state Potts model. These analytical
predictions are confirmed by numerical transfer matrix results. Our conclusions extend to a large
class of bipartite decorated lattices.

1. Introduction

Compact polymers, the continuum limit of random walks that are constrained to visit every
site of some latticeL, are intriguing in so far as their critical exponents depend explicitly onL.
Whilst first observed numerically [1], this curious lack of universality was firmly established
through the exact solution of the compact polymer problem on the honeycomb [2,3] and, very
recently, the square lattice [4,5].

However, not every lattice can support a compact polymer phase. To see this, consider
more generally an O(n)-type loop model defined onL, in which each closed loop is weighed
by n, and each vertexnot visited by a loop carries a factor oft . It is well known that for
|n| 6 2 this model possesses a branch of low-temperature (t being the temperature) attractive
critical fixed points [6, 7] with critical exponents that do not depend onL, even whenL is
not a regular lattice but an arbitrary network [8]. On the other hand, whenever the model is
invariant undert → −t , as is the case ifL can only accommodate loops ofevenlength, this
symmetry allows for a distinct zero-temperature branch of repulsive fixed points [1], with the
n → 0 limit representing the compact polymer problem. That the critical behaviour of this
class of fully packed loop (FPL) models depends onL is readily seen from the solutions of the
honeycomb and the square case given in [3–5]. Namely, the continuum limit of these models
can be described by a conformal field theory (CFT) for a fluctuating interface, where the fully
packing constraint forces the height variable to be avector, with a number of components that
depends on the coordination number of the lattice at hand.

This t → −t symmetry argument, originally put forward by Blöte and Nienhuis [1],
prompts us to conjecture its inverse: wheneverL allows for loops ofodd length, so that the

† Laboratoire associé aux universit́es Paris 6, Paris 7 et au CNRS.
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Figure 1. FPL on the square–octagon lattice. In the corresponding transfer
matrix, periodic boundary conditions are imposed across a strip of width
L loop segments (hereL = 4). The state space is that of all well-nested,
pairwise connections amongst theL dangling ends in the upper row.

symmetry is destroyed, the renormalization group (RG) flow can be expected to take us to non-
zerot , eventually terminating in the dense, universal O(n) phase. Support for this conjecture
so far comes from numerics in the case of the triangular lattice [9], and recently for a class of
decorated lattices interpolating between the square and the triangular lattices [10]†.

Accepting for the moment the validity of this conjecture however leaves us with an infinite
set of bipartite lattices, each one being a potential candidate for a novel universality class of
compact polymers. This perspective is especially appealing in the light of the constructive
point of view taken in [3–5, 11]. In these papers new CFTs were explicitly constructed,
based on purely geometrical considerations applied to the FPL model in question. On the
other hand, if the bipartite lattices generate an entire family of distrinct CFTs, this gives
rise to important classification issues. In particular one would like to understand on which
microscopic parameters (bending angles, coordination number, steric constraints) the resulting
conformational exponents do depend.

In this paper we examine FPL models on a class of bipartite lattices, in which every
vertex of a regular (square or honeycomb) lattice has been decorated. An RG argument,
essentially amounting to a summation over the decoration, reveals that the Liouville field
theory construction [12] should really be based on the undecorated lattice, but with bare vertex
weights that depend on the loop fugacityn. This leads to a novel scenario in which, depending
onn, the model may either renormalize towards the dense phase of the O(n)model or flow off
to a non-critical phase, even forn < 2!

The case of the square–octagon lattice, shown in figure 1, is investigated in detail. This
lattice can be thought of as a square lattice in which each vertex has been decorated with a tilted
square. Our interest in the square–octagon lattice stems from the fact that it is bipartite and
has the same coordination number as the honeycomb lattice, but enjoys the symmetry of the
square lattice. In particular it will enable us to assess whether the critical behaviour of compact
polymers on a latticeL depends only on its coordination number, only on the bond angles, or
on a combination of both these parameters. Our analysis suggests that the corresponding FPL
model belongs to the dense O(n) phase forn < 1.88, whilst forn > 1.88 a finite correlation

† Although belonging to the universality class of the square lattice FPL model [4, 5] the FPL model on the square–
diagonal lattice does not constitute a very good counterexample, since the fully packing constraint actually prevents
the loops from occupying the diagonal edges. (Note that the proof given in [10] is also valid forn 6= 0.)
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Figure 2. Phase diagram of the O(n) model on the honeycomb lattice.

length is generated. Forn = 2 we show rigorously that the model is equivalent to the (non-
critical) 9-state Potts model. The analytical results are confirmed by numerical transfer matrix
calculations on strips of width up toLmax= 18 loop segments.

Having introduced the models in section 2, we present the analytical results in section 3
and the numerics in section 4. Our results are discussed in section 5.

2. The models

An FPL model on a latticeL is defined by the partition function

ZFPL =
∑
GFPL

nN (2.1)

where the sum runs over all configurationsGFPL of closed loops drawn along the edges ofL
so that every vertex is visited by a loop. Within a given configuration a weightn is given to
each of itsN loops.

An FPL model onL can be generalized to an O(n) model by lifting the fully packing
constraint and further weighing each empty vertex by a factor oft . Physically,t corresponds
to a temperature, the FPL model thus being the zero-temperature limit of the O(n) model.
WhenL is the honeycomb lattice, the resulting phase diagram is as shown in figure 2 [1]. For
|n| 6 2, three branches, or phases, of critical behaviour exist. SinceL is bipartite, the resulting
t → −t symmetry allows for a compact phase att = 0 [1–3], as discussed at length in the
introduction. Fort > 0, Nienhuis has found the exact parametrization of a dense and a dilute
phase, and determined the critical exponents as functions ofn [6].

For our discussion of the square–octagon FPL model we shall need the corresponding
parametrization for the O(n) model on thesquarelattice. The definition of the partition
function is now slightly more complicated, since each vertex can be visited by the loops in
several ways that are unrelated by rotational symmetry. An appropriate choice is

ZO(n) =
∑
G
tNt uNuvNvwNwnN (2.2)

whereNt ,Nu,Nv andNw are the number of vertices visited by respectively zero, one turning,
one straight, and two mutually avoiding loop segments. It is convenient to redefine the units
of temperature so thatt = 1.
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Nienhuis [7,13] has identified five branches of critical behaviour for the model (2.2). The
first four are parametrized by

wc =
{

2−
[
1− 2 sin

(
θ

2

)][
1 + 2 sin

(
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2

)]2
}−1

uc = 4wc sin

(
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2

)
cos

(
π

4
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4

)
vc = wc

[
1 + 2 sin

(
θ

2

)]
n = −2 cos(2θ)

(2.3)

whereθ ∈ [(2−b)π/2, (3−b)π/2] corresponds to branchb = 1, 2, 3, 4. It has recently been
noticed that the edgesnotcovered by the original (‘black’) loops form a second species of closed
(‘grey’) loops, each one occuring with unit weight [11]. Lifting the fully packing constraint
implies that the two loop flavours decouple, and each of them can independently reside in
either of the two critical phases (dense or dilute) discussed above. The black (resp. grey) loops
are dense on branches 2 and 4 (resp. 1 and 2), and dilute on branches 1 and 3 (resp. 3 and
4). On branches 1 and 2 the grey loops contribute neither to the central charge, nor to the
geometrical (string) scaling dimensions, and in the scaling limit these two branches are thus
completely analogous to the dilute and the dense branches of the O(n)model on the honeycomb
lattice [11].

The last critical branch, known as branch 0, has weights

uc = wc = 1
2 vc = 0 − 36 n 6 1 (2.4)

and can be exactly mapped onto the dense phase of the O(n + 1)model [7], or equivalently to
the self-dual(n + 1)2-state Potts model [6].

3. RG analysis and an exact mapping

At first sight it would seem that the continuum limit of the FPL model (2.1) on the square–
octagon lattice should be described by a Liouville field theory for a two-dimensional height
field, since the lattice has the same coordination number as the honeycomb lattice [3]. However,
we shall presently see that onlyoneheight component survives when applying the appropriate
coarse graining procedure to the two-dimensional microscopic heights defined on the lattice
plaquettes.

Consider performing the first step of a real-space RG transformation of equation (2.1),
by summing over the degrees of freedom residing at the decorating squares. In this way the
decorated vertices transform into weighted undecorated vertices, as shown on figure 3. The
renormalized model is then simply the O(n) model on the square lattice (2.2), but with some
particular ‘bare’ values of the vertex weights. Defining again the empty vertex to have unit
weight, these bare weights read

u = 1

n
v = 0 w = 1

n
. (3.1)

Following the standard procedure [14], microscopic heights can be defined on the lattice
plaquettes by orienting the loops and assigning a vector,A, B or C, to each of the three
possible bond states:A (B) if the bond is covered by a loop directed towards (away from) a
site of the even sublattice, andC if the bond is empty. When encircling an even (odd) site in
the (counter)clockwise direction the microscopic height increases by the corresponding vector
whenever a bond is crossed. As was first pointed out in [3], the fully packing constraint leads to
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Figure 3. First step in a real-space
renormalization of the square–octagon
lattice FPL model. The renormalized
vertices get weighted as shown.

Figure 4. RG flow in the square–
octagon FPL model. After tracing
over the decoration, the bare value
of 1/u is given by the dashed
line. For n < 1.88 the flow
is directed towards the attractive
branch of dense fixed points, whilst
for 1.88 < n < 2 the system
renormalizes towards the high-
temperature disordered phase.

the conditionA+B +C = 0, whence the height musta priori be two-dimensional. However,
the RG transformation that we have just applied lifts the fully-packing constraint, due to the
appearance of the bottom left vertex of figure 3. Defining now the sublattices with respect
to the renormalized (square) lattice we have the additional constraint 4C = 0, whence the
coarse grained height field should really be one dimensional†, and O(n)-like behaviour is to be
expected. Also note that it clearly suffices to define the microscopic heights on the octagonal
plaquettes in order to obtain a continuous height field defined everywhere inR2 by the usual
coarse graining procedure [14].

The reason that the renormalized FPL model is still interesting is that the bare vertex
weights (3.1) are now some fixed functions of the loop fugacityn, rather than arbitrary
parameters that can be tuned to their critical values. This constitutes an interesting situation
which has not been encountered before. We shall soon see that it implies that the FPL model
(2.1), unlike any other loop model studied this far, is only critical within a part of the interval
|n| 6 2.

† See [11] for similar examples of such a reduction of the dimensionality of the height field.
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In figure 4 we show 1/uc, the weight of the empty vertex relative to that of a turning loop
segment, as a function ofn for the critical branches 1 (dilute phase) and 2 (dense phase) of the
O(n) model on the square lattice; cf equation (2.3). In analogy with the honeycomb case the
dense and dilute branches again consist of respectively attractive and repulsive fixed points.
With the bare value 1/u given by equation (3.1) the subsequent RG flow must therefore be
as schematically indicated on the figure. Forn ' 1.88 there is an intersection between the
bare value and that of the dilute branch (the exact value ofn for which this occurs is given
implicitly by equatingu = uc, obtained from equations (2.3) and (3.1)), and forn > 1.88
the fact that the dilute fixed points arerepulsiveimplies that the flow is now directed towards
the high-temperature (u = 0) disordered phase of the O(n) model. In other words, a finite
correlation length (roughly the size of the largest loop in a typical configuration) is generated
and the model is no longer critical.

Of course we should be a little more careful, sinceu is not the only parameter in the
model. Whenever the bare weights (3.1) do not intersect one of the five branches of fixed
points,v andw will flow as well. In particular,v will, in general, flow towards non-zero
values, since the turning loop segments always occur with finite weight, and these are clearly
capable of generating straight loop segments on larger length scales. The essential point is that
for 1.88< n < 2 empty vertices will begin to proliferate, and there is no physical mechanism
for halting the flow towards the disordered phase†.

The pointn = 2 merits special attention. Here the bare weights are

u = w = 1
2 v = 0 (3.2)

which coincides with the fixed point values on branch 0; see equation (2.4). Invoking Nienhuis’
mapping [7], then = 2 FPL model is therefore exactly equivalent to the self-dual 9-state Potts
model, which is, of course, again non-critical [15].

4. Transfer matrix results

In order to confirm the analytical predictions given in section 3 we have numerically calculated
effective values of the central chargec and the thermal scaling dimensionxt on strips of width
L = 4, 6, . . . ,18 loop segments. To this end we adapted the connectivity basis transfer
matrices described in [4, 7] to the square–octagon lattice. The working principle of these
transfer matrices is illustrated in figure 1: to determine the number of loop closures induced
by the addition of a new row of vertices it suffices to know the pairwise connections amongst
theL dangling ends of the top row. ForL even, the number of such connections is [7]

aL =
L/2∑
i=0

(
L

2i

)
cL/2−i (4.1)

wherecm = (2m)!
m!(m+1)! are the Catalan numbers. Thus, the transfer matrix for a strip of widthL

has dimensionsaL × aL, and a sparse matrix decomposition can be made by adding one site
of the lattice at a time, rather than an entire row. The size of the largest matrix employed is
given bya18 = 6 536 382.

The effective central chargec(L,L + 4) has been estimated by three-point fits of the
form [4,16,17]

f0(L) = f0(∞)− πc

6L2
+
A

L4
+ · · · (4.2)

† The flow cannot be towards branch 0 since this is a repulsive fixed point.
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Table 1. Three-point estimates for the central charge, compared with exact results for the dense
phase of the O(n) model.

n c(4, 8) c(6, 10) c(8, 12) c(10, 14) c(12, 16) c(14, 18) O(n)

0.0 −1.9784 −1.9862 −1.9880 −1.9924 −1.9963 −1.9980 −2.0000
0.5 −0.8898 −0.8975 −0.8729 −0.8488 −0.8338 −0.8259 −0.8197
1.0 0.0706 −0.0856 −0.0965 −0.0701 −0.0434 −0.0246 0.0000
1.5 0.9390 0.6602 0.5504 0.5144 0.5117 0.5227 0.5876
2.0 1.6484 1.4844 1.4495 1.4362 1.4225 1.4068 1.0000

Table 2. Two-point estimates for the thermal scaling dimension, juxtaposed with exact values for
the dense O(n) model.

n xt (4, 6) xt (6, 8) xt (8, 10) xt (10, 12) xt (12, 14) xt (14, 16) xt (16, 18) O(n)

0.0 1.2942 1.9142 2.5336 2.5970 1.9830 1.9849 1.9890 2.0000
0.5 1.3792 1.8833 2.4173 1.5522 1.5201 1.5557 1.5685 1.5843
1.0 1.2480 1.2843 1.2895 1.2856 1.2799 1.2745 1.2701 1.2500
1.5 0.8593 0.7842 0.8088 0.8392 0.8664 0.8876 0.9030 0.9482
2.0 0.5488 0.5708 0.5629 0.4188 0.3864 0.3595 0.3369 0.5000

applied to the free energy per sitef0(L
′)with L′ = L,L+ 2, L+ 4. Similarly, effective values

xt (L,L+2) of the thermal scaling dimension were found from two-point fits of the form [4,18]

f1(L)− f0(L) = 2πxt
L2

+
B

L4
+ · · · (4.3)

wheref0(L) andf1(L) are related to the ground state and the first excited state of the transfer
matrix spectra in the usual way.

The numerical results are given in tables 1 and 2. Forn 6 1.5 we see the expected
convergence towards the exact values of the O(n) model in the dense phase, which read [19]

c = 1− 6e2

1− e xt = 2e + 1

2(1− e) (4.4)

with e ≡ 1
π

arccos(n/2). Forn = 1.5 the convergence is rather slow, especially in the case of
c, reflecting a large crossover length.

It is interesting to notice that the RG transformation described in section 3 has a very
physical interpretation in terms of the finite-size estimates: only for approximatelyL > 10
does the model start ‘feeling’ that it is renormalizing towards a dense O(n) model, and
accordingly the convergence of the estimates towards their exactL → ∞ values becomes
monotonic. It should be clear from the tables that employing standard extrapolation techniques
in this regime would bring us quite close to the exact O(n) values of the critical exponents.

As predicted by theory, the FPL model is no longer critical atn = 2. This is particulary
visible from the monotonic decrease of thext estimates, which are well below the exact O(n)
valuext = 1

2. For a system with a finite correlation length,ξ < ∞, the effective values
for c should eventually tend to zero. The fact that we observe rather large effective values
is in agreement with [7], and rather predictable sinceξ is much greater than the largest strip
width used in the simulations. Actually, the correlation length of the 9-state Potts model can
be exactly evaluated [20] asξ = 14.9 . . ., which here corresponds toL = 29.8 . . . due to a
geometrical factor of two arising from the transformation to a spin model [7]†.

† For comparison we performed similar computations for the 9-state Potts model in its loop representation [21],
finding again effective values ofc in the range 1.3–1.4.
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One would then expect that somewhere betweenn = 2 andn = 1.5 the correlation length
diverges, as the RG flow is captured by the basin of attraction of the dense O(n) branch. The
analysis of section 3 predicts this to happen atn ' 1.88. However, it is well known from
numerical studies of the Potts model that it is hard to distinguish a non-critical system with a
huge correlation length from a critical one, and so we did not find it practicable to further pin
down the limiting value ofn.

5. Discussion

Having seen that two of the simplest two-dimensional lattices (square and honeycomb) give rise
to distinct compact universality classes, it would be tempting to conjecture that an FPL model
defined on any new lattice leads to different critical exponents and has a new CFT describing
its continuum limit. In the present paper we have demonstrated that this is far from being the
case. Even within the very restricted class of bipartite lattices fulfilling thet →−t symmetry
requirement, any lattice that can be viewed as a decorated square or honeycomb lattice is likely
to flow away from the compact phase by virtue of an RG transformation analogous to the one
presented in section 3.

Despite the curious lattice dependence of the compact phases, it thus appears that the
number of distinct universality classes is very restricted. We recall that the continuum
limit of all loop models solved to this date can be constructed by perturbing a SU(N)k=1

Wess–Zumino–Witten model by exactly marginal operators and introducing an appropriate
background charge [14]. It would be most interesting to pursue the physical reason why only
the casesN = 2 (the O(n) [11], Potts [22] and six-vertex [14] models),N = 3 (the FPL
model on the honeycomb lattice [3]), andN = 4 (the two-flavoured FPL model on the square
lattice [4,5]) seem to occur in practice.

The square–octagon lattice FPL model studied here turned out to be interesting in several
respects. First, it provides us with the first example of an non-oriented [23], bipartite [9, 10]
lattice for which the scaling properties of compact and dense polymers are identical. In
particular, the exact value of the conformational exponentγ is 19

16 [8, 19], indicating a rather
strong entropic repulsion between the chain ends. Second, the square–octagon model presents
a novel scenario in which the same FPL model may renormalize towards different conformal
field theories, or even flow off to a non-critical regime, depending on the value of the loop
fugacity |n| 6 2. In particular, one might be able to ‘design’ a decorated lattice with bare
vertex weights that simultaneously intersect those of the dilute O(n) phase for some value
of n. This could be a starting point for gaining a microscopic, geometrical understanding of
the Coulomb gas charge asymmetry [19] which was shown in [11] to distinguish between the
dense and dilute phase of the O(n)model. Finally, our model proves that the scaling properties
of compact polymers do not depend exclusively on either bond angles or coordination number,
but rather on a combination of these two parameters.
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